Mecânica
   Cinemática
   Dinâmica
   Mais [+]
 Termologia
   Termometria
   Calorimetria
   Mais [+]
 Óptica
   Fundamentos
   Reflexão da luz
   Mais [+]
 Ondulatória
   MHS
   Ondas
   Mais [+]
 Eletromagnetismo
   Eletrostática
   Eletrodinâmica
   Mais [+]
 História da Física
 Biografias de Físicos

 Jogos On-line
 Exercícios Resolvidos
 Provas de Vestibular
 Simulados On-line

 Laifis de Física
 Área dos Professores
 Fórum de Discussão
 Fórmulas e Dicas
 Softwares de Física
 Dicionário de Física
 Vídeos
 Simulações

 Física no Cotidiano
 Curiosidades
 O Que o Físico Faz?
 Indicação de Livros
 Fale Conosco

 
Busca Geral

 

Estática de um corpo rígido

 

Chamamos de corpo rígido ou corpo extenso, todo o objeto que não pode ser descrito por um ponto.

Para conhecermos o equilíbrio nestes casos é necessário estabelecer dois conceitos:

 

Centro de massa

 

Um corpo extenso pode ser considerado um sistema de partículas, cada uma com sua massa.

A resultante total das massas das partículas é a massa total do corpo. Seja CM o ponto em que podemos considerar concentrada toda a massa do corpo, este ponto será chamado Centro de Massa do corpo.

Para corpos simétricos, que apresentam distribuição uniforme de massa, o centro de massa é o próprio centro geométrico do sistema. Como no caso de uma esfera homogênea, ou de um cubo perfeito.

Para os demais casos, o cálculo do centro de massa é feito através da média aritmética ponderada das distâncias de cada ponto do sistema.

Para calcularmos o centro de massa precisamos saber suas coordenadas em cada eixo do plano cartesiano acima, levando em consideração a massa de cada partícula:

Então o Centro de Massa do sistema de partículas acima está localizado no ponto (1,09 , 0,875), ou seja:

Como forma genérica da fórmula do centro de massa temos:

 

 

Momento de uma força

 

Imagine uma pessoa tentando abrir uma porta, ela precisará fazer mais força se for empurrada na extremidade contrária à dobradiça, onde a maçaneta se encontra, ou no meio da porta?

Claramente percebemos que é mais fácil abrir ou fechar a porta se aplicarmos força em sua extremidade, onde está a maçaneta. Isso acontece, pois existe uma grandeza chamada Momento de Força , que também pode ser chamado Torque.

Esta grandeza é proporcional a Força e a distância da aplicação em relação ao ponto de giro, ou seja:

A unidade do Momento da Força no sistema internacional é o Newton-metro (N.m)

Como este é um produto vetorial, podemos dizer que o módulo do Momento da Força é:

Sendo:

M= Módulo do Momento da Força.

F= Módulo da Força.

d=distância entre a aplicação da força ao ponto de giro; braço de alavanca.

sen θ=menor ângulo formado entre os dois vetores.

 

Como , se a aplicação da força for perpendicular à d o momento será máximo;

Como , quando a aplicação da força é paralela à d, o momento é nulo.

E a direção e o sentido deste vetor são dados pela Regra da Mão Direita.

 

O Momento da Força de um corpo é:

  • Positivo quando girar no sentido anti-horário;
  • Negativo quando girar no sentido horário;

 

Exemplo:

Qual o momento de força para uma força de 10N aplicada perpendicularmente a uma porta 1,2m das dobradiças?

Curta nossa página
nas redes sociais!

 

 

Mais produtos

Sobre nós | Política de privacidade | Contrato do Usuário | Anuncie | Fale conosco

Copyright © 2008-2014 Só Física. Todos os direitos reservados. Desenvolvido por Grupo Virtuous.