Mecânica
   Cinemática
   Dinâmica
   Mais [+]
 Termologia
   Termometria
   Calorimetria
   Mais [+]
 Óptica
   Fundamentos
   Reflexão da luz
   Mais [+]
 Ondulatória
   MHS
   Ondas
   Mais [+]
 Eletromagnetismo
   Eletrostática
   Eletrodinâmica
   Mais [+]
 História da Física
 Biografias de Físicos

 Jogos On-line
 Exercícios Resolvidos
 Provas de Vestibular
 Simulados On-line

 Laifis de Física
 Área dos Professores
 Fórum de Discussão
 Fórmulas e Dicas
 Softwares de Física
 Dicionário de Física
 Vídeos
 Simulações

 Física no Cotidiano
 Curiosidades
 O Que o Físico Faz?
 Indicação de Livros
 Fale Conosco

 
Busca Geral

 

Movimento Circular

Grandezas Angulares

As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade (v) e de aceleração (a), eram úteis quando o objetivo era descrever movimentos lineares, mas na análise de movimentos circulares, devemos introduzir novas grandezas, que são chamadas grandezas angulares, medidas sempre em radianos. São elas:

  • deslocamento/espaço angular: φ (phi)
  • velocidade angular: ω (ômega)
  • aceleração angular: α (alpha)

Saiba mais...

Da definição de radiano temos:

Desta definição é possível obter a relação:

E também é possível saber que o arco correspondente a 1rad é o ângulo formado quando seu arco S tem o mesmo comprimento do raio R.

 

Espaço Angular (φ)

Chama-se espaço angular o espaço do arco formado, quando um móvel encontra-se a uma abertura de ângulo φ qualquer em relação ao ponto denominado origem.

E é calculado por:

 

Deslocamento angular (Δφ)

Assim como para o deslocamento linear, temos um deslocamento angular se calcularmos a diferença entre a posição angular final e a posição angular inicial:

Sendo:

Por convenção:

No sentido anti-horário o deslocamento angular é positivo.

No sentido horário o deslocamento angular é negativo.

 

Velocidade Angular (ω)

Análogo à velocidade linear, podemos definir a velocidade angular média, como a razão entre o deslocamento angular pelo intervalo de tempo do movimento:

Sua unidade no Sistema Internacional é: rad/s

Sendo também encontradas: rpm, rev/min, rev/s.

Também é possível definir a velocidade angular instantânea como o limite da velocidade angular média quando o intervalo de tempo tender a zero:

 

Aceleração Angular (α)

Seguindo a mesma analogia utilizada para a velocidade angular, definimos aceleração angular média como:

 

Algumas relações importantes

Através da definição de radiano dada anteriormente temos que:

mas se isolarmos S:

derivando esta igualdade em ambos os lados em função do tempo obteremos:

mas a derivada da Posição em função do tempo é igual a velocidade linear e a derivada da Posição Angular em função do tempo é igual a velocidade angular, logo:

onde podemos novamente derivar a igualdade em função do tempo e obteremos:

mas a derivada da velocidade linear em função do tempo é igual a aceleração linear, que no movimento circular é tangente à trajetória, e a derivada da velocidade angular em função do tempo é igual a aceleração angular, então:

Então:

Linear
Angular
S
=
φR
v
=
ωR
a
=
αR

 

Período e Frequência

 

Período (T) é o intervalo de tempo mínimo para que um fenômeno ciclico se repita. Sua unidade é a unidade de tempo (segundo, minuto, hora...)

Frequência(f) é o número de vezes que um fenômeno ocorre em certa unidade de tempo. Sua unidade mais comum é Hertz (1Hz=1/s) sendo também encontradas kHz, MHz e rpm. No movimento circular a frequência equivale ao número de rotações por segundo sendo equivalente a velocidade angular.

Para converter rotações por segundo para rad/s:

sabendo que 1rotação = 2πrad,

Movimento Circular Uniforme

 

Um corpo está em Movimento Curvilíneo Uniforme, se sua trajetória for descrita por um círculo com um "eixo de rotação" a uma distância R, e sua velocidade for constante, ou seja, a mesma em todos os pontos do percurso.

No cotidiano, observamos muitos exemplos de MCU, como uma roda gigante, um carrossel ou as pás de um ventilador girando.

Embora a velocidade linear seja constante, ela sofre mudança de direção e sentido, logo existe uma aceleração, mas como esta aceleração não influencia no módulo da velocidade, chamamos de Aceleração Centrípeta.

Esta aceleração é relacionada com a velocidade angular da seguinte forma:

Sabendo que e que , pode-se converter a função horária do espaço linear para o espaço angular:

então:

 

Curta nossa página
nas redes sociais!

 

 

Mais produtos

Sobre nós | Política de privacidade | Contrato do Usuário | Anuncie | Fale conosco

Copyright © 2008-2014 Só Física. Todos os direitos reservados. Desenvolvido por Grupo Virtuous.